\(\dfrac{1}{50}-\dfrac{1}{50.49}-\dfrac{1}{49.48}-...-\dfrac{1}{2.1}\\ =-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{48.49}+\dfrac{1}{49.50}-\dfrac{1}{50}\right)\\ =-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{48}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{50}-\dfrac{1}{50}\right)\\ =-\left(1-\dfrac{1}{50}-\dfrac{1}{50}\right)\\ =-\dfrac{24}{25}\)