ĐK : x \(\ne\)0 ; \(x\ne-4\)
Ta có : \(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{x\left(x+4\right)}=\frac{53}{216}\)
\(\Rightarrow\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{x\left(x+4\right)}=\frac{53}{216}\)
=> \(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{53}{216}\)
=> \(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{53}{216}:\frac{1}{4}\)
=> \(1-\frac{1}{x+4}=\frac{53}{54}\)
=> \(\frac{1}{x+4}=\frac{1}{54}\)
=> x + 4 = 54
=> x = 50 (tm)
Vậy x = 50