đặt A=1/2.5 +1/5.8 + 1/811+...+1/17.20
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{9}{20}:3\)
\(A=\frac{3}{20}\)
đặt A=1/2.5 +1/5.8 + 1/811+...+1/17.20
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{9}{20}:3\)
\(A=\frac{3}{20}\)
Tính tổng
1938.(1/2.5 +1/5.8 + 1/811+...+1/17.20)
Tính S
S=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
so sánh A với 1 , biếtA = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
S=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+...+\(\frac{1}{17.20}\)
tinh nhanh
Tính tổng sau:
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{17.20}\)
giải giúp mình nka
Gọi A là tập hợp các số nguyên m. Tìm số phần tử của tập hợp A
-(1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20)<m/20≤ 3/20-(-3/4)+(-4/5)
C= 3/2.5 + 3/5.8 + ... + 3/17.20
Tính:
A=3/2.5+3/5.8+....+3/17.20