\(\dfrac{1}{2}.2^{n+4}.2^n=2^5\\ =>2^{n+4+n}=2^5:\dfrac{1}{2}\\ =>2^{2n+4}=2^5.2\\ =>2^{2n+4}=2^6\\ =>2n+4=6\\ =>2n=2=>n=1\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}\cdot2^{n+4}\cdot2^n=2^5\)
`\Rightarrow `\(\dfrac{1}{2}\cdot2^n\cdot2^4\cdot2^n=2^5\)
`\Rightarrow `\(2^{n\cdot2+4}=2^5\div\dfrac{1}{2}\)
`\Rightarrow `\(2^{n\cdot2+4}=2^6\)
`\Rightarrow `\(n\cdot2+4=6\)
`\Rightarrow `\(2n=2\)
`\Rightarrow n=1`