\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)-X=2\)
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)-X=2\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)-X=2\)
\(\frac{1}{2}.\left(1-\frac{1}{101}\right)-X=2\)
\(\frac{1}{2}.\frac{100}{101}-X=2\)
\(\frac{50}{101}-X=2\)
\(X=\frac{50}{101}-2\)
\(X=\frac{-152}{101}\)