\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\)
\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+....+\left(\frac{1}{50}+\frac{1}{51}\right)\)
\(=\frac{101}{1.100}+\frac{101}{2.99}+....+\frac{101}{50.51}\)
\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
Vế mẫu :
\(\frac{1}{1.100}+\frac{1}{2.99}+......+\frac{1}{1.100}\)
\(=2\left(\frac{1}{1.100}+\frac{1}{2.99}+....+\frac{1}{50.51}\right)\)
Vậy kết quả là :
\(\frac{101}{2}\)
Tử số = 1 + 1/2 + 1/3 + 1/4 + ... + 1/100
= (1 + 1/100) + (1/2 + 1/99) + ... + (1/50 + 1/51)
= 101/1.100 + 101/2.99 + ... + 101/50.51
= 101.(1/1.100 + 1/2.99 + ... + 1/50.51)
Mẫu số = 1/1.100 + 1/2.99 + 1/3.98 + ... + 1/99.2 + 1/100.1
= 2.(1/1.100 + 1/2.99 + ... + 1/50.51)
=> phân số đề bài cho = 101/2
Biến đổi mẫu số:
1/1.100+1/2.99+1/3.98+...+1/99.2+1/100.1