1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016
<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016
<=> 1 - 1/x+1 = 2015/2016
<=> 1/x+1 = 1/2016
<=> x + 1 = 2016
<=> x = 2015
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(x=2016-1=2015\)
Đáp số: 2015