Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow A=1-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}=\frac{2009}{2010}\)
Vậy \(A=\frac{2009}{2010}\)
1/1*2+1/2*3+........+1/2009*2010
=1-1/2+1/2-1/3+..........+1/2009-1/2010
=1-1/2010
=2009/2010