Ta có ; \(1\dfrac{1}{10}.1\dfrac{1}{11}.....1\dfrac{1}{2011}.1\dfrac{1}{2012}\)
\(=\dfrac{11}{10}.\dfrac{12}{11}.....\dfrac{2012}{2011}.\dfrac{2013}{2012}\)
\(=\dfrac{2013}{10}=201,3\)
1 \(\dfrac{1}{10}\)x 1\(\dfrac{1}{11}\)x 1\(\dfrac{1}{12}\) x...x 1\(\dfrac{1}{2011}\)x 1\(\dfrac{1}{2012}\)
=\(\dfrac{11}{10}\)x \(\dfrac{12}{11}\)x \(\dfrac{13}{12}\)x \(\dfrac{2012}{2011}\)x \(\dfrac{2013}{2012}\)