\(\left(3x-1\right)^2=\left(x-2\right)^2\)
⇔\(9x^2-6x+1=x^2-4x+4\)
\(\Leftrightarrow8x^2-2x-3=0\)
\(\Leftrightarrow8x^2-6x+4x-3=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{3}{4}\end{matrix}\right.\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
\(x^3+x^2y-x^2z-xyz=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=x\left(x-z\right)\left(x+y\right)\)