1, Tìm số tự nhiên n lớn nhất để n3 + 100 chia hết cho n + 10
2, Tìm các số tự nhiên p để tổng tất cả các ước số tự nhiên của p4 là 1 số chính phương
3, CM: a3 + b3 + c3 \(⋮\) 9 thì abc \(⋮\) 3
4, Tìm n để A là số chính phương: A = ( n + 3 )( 4n2 + 14n + 7 )
5, Tìm các cặp ( x,y ) thỏa mãn: 5x2 + 12xy + 8y2 - 4x - 4y = 33
6, Tìm a,b ( nguyên dương ) để \(\frac{a^2+b}{b^2-a},\frac{b^2 +a}{a^2-b}\)là số nguyên
\(^3+100⋮n+10\Leftrightarrow n^3+1000-900⋮n+10\Leftrightarrow\left(n+10\right)\left(n^2-10n+100\right)-900⋮n+10\Leftrightarrow900⋮n+10\Leftrightarrow n+10=900\left(\text{ vì n lon nhất}\right)\Leftrightarrow n=890\)