Bài 1:
Ta có:
\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)
\(=(x-3)(4x^2+14x+42)+119\)
Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$
Bài 2:
Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$
Áp dụng vào bài toán:
\(f(2)=-23\)
\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)
\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)
Bài 3:
Ta có:
\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)
\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)
\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)
Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$
\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)
Bài 4:
\(x^2+y^2-4y+5=0\)
\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)
\(\Leftrightarrow x^2+(y-2)^2+1=0\)
\(\Rightarrow x^2+(y-2)^2=-1\)
Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý
Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.