Ta có:
\(\left(\frac{1}{32}\right)^7=\frac{1^7}{32^7}=\frac{1}{\left(2^5\right)^7}=\frac{1}{2^{35}}\)
\(\left(\frac{1}{16}\right)^9=\frac{1^9}{16^9}=\frac{1}{\left(2^4\right)^9}=\frac{1}{2^{36}}\)
Vì 235 < 236
=> \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\)
=> \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
\(\left(\frac{1}{32}\right)^7=\left[\left(\frac{1}{2}\right)^5\right]^7=\left(\frac{1}{2}\right)^{35}\)và \(\left(\frac{1}{16}\right)^9=\left[\left(\frac{1}{2}\right)^4\right]^9=\left(\frac{1}{2}\right)^{32}\)
Mà:\(\left(\frac{1}{2}\right)^{35}>\left(\frac{1}{2}\right)^{32}\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
\(\left(\frac{1}{32}\right)^7=\left(\frac{1}{2}\right)^{35}\)
\(\left(\frac{1}{16}\right)^9=\left(\frac{1}{2}\right)^{32}\)
Do \(\left(\frac{1}{2}\right)^{35}>\left(\frac{1}{2}\right)^{32}\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)