1. Rút gọn phân số
a, \(\dfrac{25.\left(-13\right)}{26.35}\)
b, \(\dfrac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)
c, \(\dfrac{-1997.1996+1}{-1995.\left(-1997\right)+1996}\)
2. Tìm x ∈ Z để các phân số sau có giá trị là 1 số nguyên
a, A =\(\dfrac{x-2}{x+3}\)
b, B = \(\dfrac{x^2-1}{x+1}\)
3. Chứng tỏ phân số \(\dfrac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.