1, Mk nghĩ là yêu cầu: Tính \(\frac{ax-by-cz}{x-y-z}\) theo x,y,z
Có \(\left\{{}\begin{matrix}x^2-yz=a\\y^2+xz=b\\z^2+xy=c\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x^3-xyz=ax\\y^3+xyz=by\\z^3+xyz=cz\end{matrix}\right.\)
Có: \(ax-by-cz=x^3-xyz-y^3-xyz-z^3-xyz=x^3-y^3-z^3-3xyz\)
=\(\left(x-y\right)^3+3xy\left(x-y\right)-z^3-3xyz\)
=\(\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x+y\right)+z^2\right]+3xy\left(x-y-z\right)\)
=\(\left(x-y-z\right)\left(x^2-2xy+y^2+xz+yz+z^2+3xy\right)\)
=\(\left(x-y-z\right)\left(x^2+y^2+z^2+xy+xz+yz\right)\)
=>\(\frac{ax-by-cz}{x-y-z}=x^2+y^2+z^2+xy+xz+yz\)
Bài 2 là loại bài buồn ngủ, cách làm cơ bản như sau:
Nhìn hệ số dự đoán điểm rơi xảy ra tại \(x=y\), vậy để tìm hệ số, ta thiết lập các BĐT sau:
\(x^2+y^2\ge2xy\) ; \(a^2x^2+b^2z^2\ge2abxz\) ; \(a^2y^2+b^2z^2\ge2abyz\)
\(\Rightarrow\left(a^2+1\right)x^2+\left(a^2+1\right)y^2+2b^2z^2\ge2\left(xy+abyz+abzx\right)\) (1)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2b^2}{a^2+1}=\frac{9}{2}\\ab=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4b^2=9a^2+9\\a=\frac{1}{b}\end{matrix}\right.\)
\(\Rightarrow4b^2=\frac{9}{b^2}+9\Rightarrow4b^4-9b^2-9=0\Rightarrow b=\sqrt{3}\) \(\Rightarrow a=\frac{1}{\sqrt{3}}\)
Hệ số đã xong, vậy thì bài toán được giải như sau:
Ta có:
\(x^2+y^2\ge2xy\) ; \(\frac{1}{3}y^2+3z^2\ge2yz\) ; \(\frac{1}{3}x^2+3z^2\ge2xz\)
Cộng vế với vế:
\(\frac{4}{3}\left(x^2+y^2+\frac{9}{2}z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Rightarrow A\le\frac{2}{3}.5=\frac{10}{3}\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\sqrt{2};z=\frac{\sqrt{2}}{3}\\x=y=-\sqrt{2};z=-\frac{\sqrt{2}}{3}\end{matrix}\right.\)