2) 12723 < 12823= (27)23 = 2161
51318 >51218 = (29)18 = 2162
Vì 2161 < 2162 => 12723 < 2161 < 2162 < 51318
Vậy: 12723 < 51318
ai làm câu 1 tui tick đúng cho hehe^^
2) 12723 < 12823= (27)23 = 2161
51318 >51218 = (29)18 = 2162
Vì 2161 < 2162 => 12723 < 2161 < 2162 < 51318
Vậy: 12723 < 51318
ai làm câu 1 tui tick đúng cho hehe^^
Cho \(A=\left(\dfrac{1}{4}-1\right).\left(\dfrac{1}{9}-1\right)...\left(\dfrac{1}{100}-1\right)\)
So sánh \(A\) với \(\dfrac{-11}{21}\)
Giải chi tiết dùm mik nha. Thankss
Chứng minh rằng\(\left|a+b\right|\le\left|1+ab\right|\)với\( \left|a\right|,\left|b\right|\le1\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\).
Giải chi tiết dùm mình với ạ.
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\). Trong đó a,b,c khác nhau và khác 0 thì:
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
chứng minh rằng hằng đẳng thức sau luôn đúng :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc=a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b^2\right)\)
Chứng minh rằng với mọi số thực a,b thì\(\frac{\left|a\right|}{2+\left|a\right|}+\frac{\left|b\right|}{2+\left|b\right|}\ge\frac{\left|a+b\right|}{2+\left|a+b\right|}\)
Cho căn thức vô tận\(A=\sqrt{b\left(b-1\right)+\sqrt{b\left(b-1\right)+\sqrt{b\left(b-1\right)+\sqrt{b\left(b-1\right)+\sqrt{b\left(b-1\right)+...}}}}}\)(b nguyên dương)
So sánh A với b.
Bài này mình chế ra từ 1 bài gốc.Đố các bạn giải được!
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\) trong đó a,b,c khác nhau và khác 0 thì: \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Tính giá trị của biểu thức A=3x+2y+z biết \(\left(x-3y\right)^2+\left(y-1\right)^2+\left(x+z\right)^2=0\) Giải chi tiết nha