\(22...2=\frac{2}{9}\left(99...9\right)=\frac{2}{9}\left(10^{2020}-1\right)\)
\(11...1=\frac{1}{9}\left(99...9\right)=\frac{1}{9}\left(10^{2019}-1\right)\)
Do đó:
\(A=\frac{1}{9}\left(10^{2019}-1\right).10^{2021}+\frac{2}{9}\left(10^{2020}-1\right).10+5\)
\(=\frac{1}{9}\left(10^{4040}-10^{2021}+2.10^{2021}-20+45\right)\)
\(=\frac{1}{9}\left(10^{4040}+10^{2021}+25\right)=\frac{1}{9}\left(2^{2020}+5\right)^2=\left(\frac{2^{2020}+5}{3}\right)^2\)
Mà \(2^{2020}=4^{1010}\equiv1\left(mod3\right)\Rightarrow2^{2020}+5⋮3\)
\(\Rightarrow\frac{2^{2020}+5}{3}\in Z\Rightarrow A\) là số chính phương