1. cho tam giác ABC vuông tại A, AB = 5(cm), BC = 13(cm). Qua trung điểm M của AB, vẽ một đường thẳng song song với AC cắt BC tại N. Tính độ dài MN
2. Cho tam giác ABC, điểm D,E thuộc AC sao cho AD=DE=EC. Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh: a) ME // BD b)AI // IM
3. Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi M,N lần lượt là trung điểm BG, CG. Chứng minh tứ giác MNDE có các cặp cạnh đối // và bằng nhau
4. Cho tam giác ABC, đường trung tuyến AM. Gọi D,E,F lần lượt là trung điểm của AB,AC và AM. Chứng minh rằng: a) 3 điểm D,E,F thẳng hàng b) F là trung điểm của DE
5. Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm AM, D là giao điểm của BI và AC.
a) chứng minh AD = 1/2 DC b) chứng minh BD = 4ID
Gợi ý: gọi N là trung điểm DC
Bài 2:
a: Xét ΔBDC có
CM/CB=CE/CD
nên ME//BD và ME=BD/2
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: Ilà trung điểm của AM