b: AB vuông góc AC
nên A nằm trên đường tròn đường kính BC
=>B,O,C thẳng hàng
c: BO=CO=BC/2=\(\dfrac{\sqrt{10^2+24^2}}{2}=\dfrac{26}{2}=13\left(cm\right)\)
a: Gọi OH,OK lần lượt là khoảng cách từ O đến AB,AC
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=10/2=5cm
\(OH=\sqrt{13^2-5^2}=12\left(cm\right)\)
ΔOAC cân tại O
mà OK là đường cao
nên K là trung điểm của AC
=>AK=KC=24/2=12cm
\(OK=\sqrt{13^2-12^2}=5\left(cm\right)\)