Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F chứng minh:
IA.IB=IC.ID VÀ AE.AF=\(AC^2\)(Biết BEFI đã nội tiếp đường tròn)
Cho đường tròn tâm O bán kính R, hai điểm c và D thuộc đường tròn, B là điểm chính giữa của cung nhỏ CD. Kẻ đường kính BA; trên tia đối của tia AB lấy điểm S. Nối S với cắt (O) tại M, MD cắt AB tại K, MB cắt AC tại H. Chứng minh:
a, B M D ^ = B A C ^ . Từ đó suy ra tứ giác AMHK nội tiếp
b, HK song song CD
Cho đường tròn tâm O bán kính R. Từ điểm M là điểm ngoài đường tròn kẻ hai tia tiếp tuyến MA; MB (A,B là tiếp điểm) và cát tuyến đi qua M cắt đường tròn tại C, D (C nằm giữa M và D) cung CAD nhỏ hơn cung CBD. Gọi E là giao điểm của AB với OM.
a. Chứng minh DEC = 2.DBC.
b. Từ O kẻ tia Ot vuông góc với CD cắt tia BA ở K. Chứng minh KC và KD là tiếp tuyến của đường tròn O.
cho tam giác abc nội tiếp đường tròn đường kính ab. gọi I là điểm chính giữa cung nhỏ bc. trên đoạn ob lấy điểm m. tia im cắt đường tròn tâm o tại e, ce cắt ai tại K. qua m kẻ đường thẳng song song với ac cắt ce tại f. chứng minh mf=mb
Cho đường tròn tâm O bán kính R. hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung nhỏ BC, vẽ tiếp tuyến tại E của đường tròn O cắt AB tại M. CE cắt AB tại K. I là giao điểm của ED với AB.
a/ chứng minh EA là tia phân giác góc CED
b/ chứng minh 4 điểm O;E;K;D thuộc 1 đường tròn, xác định tâm đường tròn qua 4 điểm đó.
c/ Gọi H là trung điểm DK, chứng minh tứ giác HMIO nội tiếp.
d/ chứng minh AI.BK=IK.IB
( GIÚP MÌNH CÂU D NHÉ :)
Cho đường tròn (O; R), đường kính AB vuông góc với dây cung CD tại H (HB < R). Gọi M là điểm bất kì trên cung nhỏ AC, toa AM cắt đường thăng CD tại N; MB cắt CD tại E
a, Chứng minh các tứ giác AMEH và MNBH nội tiếp
b, Chứng minh NM.NA = NC.ND = NE.NH
c, Nối BN cắt (O) tại K (K ≠ B). Đường thẳng KH cắt (O) tại điểm thứ hai là F. Chứng minh ba điểm A, E, K thẳng hàng và ∆AMF cân.
d, Chứng minh rằng khi M di dộng trên cung nhỏ AC thì I luôn thuộc một đường tròn cố định
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ