Câu 1:
Xét ΔABC vuông tại A có AM là đường phân giác
nên \(AM=\dfrac{2\cdot AB\cdot AC\cdot\cos\left(\dfrac{A}{2}\right)}{AB+AC}=\dfrac{2\cdot6\cdot8\cdot\dfrac{\sqrt{2}}{2}}{6+8}=\dfrac{24\sqrt{2}}{7}\left(cm\right)\)
Câu 1:
Xét ΔABC vuông tại A có AM là đường phân giác
nên \(AM=\dfrac{2\cdot AB\cdot AC\cdot\cos\left(\dfrac{A}{2}\right)}{AB+AC}=\dfrac{2\cdot6\cdot8\cdot\dfrac{\sqrt{2}}{2}}{6+8}=\dfrac{24\sqrt{2}}{7}\left(cm\right)\)
1, Cho \(\Delta ABC\) vuông tại A , AM là đường giác trong của \(\Delta\)\(\left(M\in BC\right)\).AB=6 cm , AC=8 cm
Tính MA
2,Cho\(\Delta ABC\) phân giác AD , AB=5 cm ,AC =8 cm, BD=4 cm .Tính \(S_{ABC}\)
Cho △ABC vuông tại A có BC = 5, AB = 2AC
A. Tính AC
b. Vẽ đường cao AD, trên tia đối AH lấy điểm I sao cho AI = \(\dfrac{1}{3}\)AH. Kẻ Cy // AH. Gọi A là giao điểm của BI và Cy. Tính \(S_{AHCD}\)
c. Vẽ (B; AB) và (C; AC) cắt nhau tại E. C/m CE là tiếp tuyến (B)
Từ điểm A nằm ngoài đường tron (O) vẽ 2 tiếp tuyến AD, AE ( D,E là các tiếp điểm). Vẽ cát tuyến ABC của đường tròn(O) sao cho điểm B nằm giữa 2 điểm A và C, tia AC nằm giữa 2 tia AD và AO. Từ điểm O kẻ OI vuông góc với AC tại H
a) CM: 5 điểm A,D,I,O,E cùng nằm trên 1 đường tròn
b) Cm IA là tia phân giác của góc DIE và AB.AC=AD^2
Vẽ hình với ak
cho tam giác ABC vuông tại A có AC = 8, góc B = 30 độ. khi đó AB bằng
1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)
2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.
a) Tính AB, AC ?
b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.
c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.
3. Vẽ đồ thị hàm số:
a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).
b) Xác định tọa độ giao điểm I của (d1) & (d2).
4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.
a) Chứng minh: BECD là hình thoi.
b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.
c) Chứng minh: MF là tiếp tuyến của đường tròn.
5. Rút gọn:
a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)
b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)
d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)
6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).
a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.
b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.
7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).
a) Chứng minh: OA là đường trung trực của BC.
b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .
c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.
8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)
a) Viết phương trình đường thẳng AB.
b) Chứng minh: ba điểm A, B, C thẳng hàng.
9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.
a) Chứng minh: OCBD là hình thoi.
b) Tính CD theo R.
c) Chứng minh: ΔACD đều.
d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).
10. Tìm ĐKXĐ và rút gọn biểu thức:
\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)
11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)
a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)
b) Viết phương trình đường thẳng d2 đi qua C và D.
c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.
12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.
a) MEHF là hình gì?
b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.
c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Hai đường cao
BE và CF của tam giác ABC cắt nhau tại điểm H.Kẻ đường kính AD.
1) Chứng minh bốn điểm B, C, E, F cùng thuộc một đường trònvà BD.CF =
AC.CE
giúp mình với ạ ! Mình cảm ơn nhiều ạ !
Cho các điểm : \(A\left(1;3\right);B\left(2;5\right);C\left(4;3\right)\)
a) Tìm tọa độ tâm đường trong ngoại tiếp \(\Delta ABC\)
b) Tìm tọa độ trọng tâm.
Cho đường thẳng y = mx + m -1 (1)
a) Vẽ đồ thị h/s với m = 2
b) CM: (1) luôn đi qua 1 điểm cố định với mọi m
c) Tìm m để (1) tạo với các trục tọa độ 1Δ có diện tích bằng 2
Đề 1:
1. Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{1}{x+2}+\frac{3}{2y-1}=4\\\frac{4}{x+2}-\frac{2}{2y-1}=3\end{matrix}\right.\)
2. Cho (P) y= x\(^2\) ; (d) y= mx-m+1. Tìm m để (P) \(\times\)(d) tại 2 điểm phân biệt nằm ở 2 phía trục tung.
3. Cho (P) y= \(\frac{-x^2}{2}\)
(d) đi C ( 0;-2) có hệ số giác là n
CM: d luôn cắt (P) tại 2 điểm phân biệt AB. Tính S\(\Delta\)OAB theo m