Cho \(\hept{\begin{cases}x,y,z>0\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\end{cases}}\)Tìm min A = \(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\)
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
bài 1 cho biểu thức với biến số thực A=\(\frac{x-2}{x^3-x^2-x-2}\)
a) tìm điều kiện của x để A có nghĩa
b) với giá trị nào của x thì A đạt dtlv. hạy chỉ ra gtln đó
bài 2 giải các hệ pt sau: a)\(\hept{\begin{cases}x-\sqrt{y+\sqrt{y-\frac{1}{4}}}=\frac{1}{2}\\y-\sqrt{x+\sqrt{x-\frac{1}{4}}}=\frac{1}{2}\end{cases}}\)
b) \(\hept{\begin{cases}x+y+z=6\\xy+yz-zx=-1\\x^2+y^2+z^2=14\end{cases}}\)
giải theo pp giải hệ pt đối xứng loại 1,2
bài 3 giải pt
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
Giải hệ phương trình:
\(\hept{\begin{cases}\\\\\end{cases}x}+y+z=3\\
\sqrt{x}+\sqrt{y}+\sqrt{z}=xy+yz+zx\\
x,y,z>0\)
giai hệ pt
\(\hept{\begin{cases}x^2+xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
\(\hept{\begin{cases}x+6\sqrt{xy}-\sqrt{y}=0\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}=3\end{cases}}\)
cho x, y, z>0 tm \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
tính A=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Giải hệ PT sau: \(\hept{\begin{cases}3\sqrt{x}+2\sqrt{y}+\sqrt{z}=\frac{\sqrt{xyz}}{6}\\6\sqrt{xy}+2\sqrt{yz}+3\sqrt{zx}=108+18\sqrt{x+4}+12\sqrt{y+9}+6\sqrt{z+36}\end{cases}}\)