\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1