Xét ΔBAM và ΔCAN , có :
AB = AC ( gt )
A1 = A2 ( gt )
Đường thẳng d chung ( M , N thuộc d )
=> ΔBAM = ΔCAN (đpcm)
Xét ΔBAM và ΔCAN , có :
AB = AC ( gt )
A1 = A2 ( gt )
Đường thẳng d chung ( M , N thuộc d )
=> ΔBAM = ΔCAN (đpcm)
Cho tam giác ABC vuông cân tại A, d là đường thẳng bất kỳ qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE vuông góc với d.
a) Chứng minh BD // CE
b) Chứng minh tam giác ADB = tam giác CEA
c) Chứng minh BD + CE = DE
d) Gọi M là trung điểm của BC
Chứng minh tam giác DAM = tam giác ECM và tam giác DME vuông cân
Ac nào giúp e vs ạ e dag cần gấp camon ạ
Co ta giác ABC vuông tại A, có góc C=30 độ, đường phân giác BD (B thuộc AC). Qua D kẻ đường thẳn vuông góc với BC tại M và cắt tia BA tại E.
a) Chứng minh AB=BM.
B) Chứng minh tam giác BCD cân và M là trung điểm BC.
C) Qua M kẻ đường thẳng vuông góc với Ac và cắt tia BD tại F. Chứng minh rẳng C,F,E thẳng hàng
cho tam giác ABC cân tại A. Trên cạnh BC lấy D;E sao cho BD=CE<BC:2 đường thẳng kẻ từ D vuông góc với AB cắt AB ở M đường thẳng kẻ từ E vuông góc AC cắt AC ở N . Chứng minh a) DM=EN b) EM=ĐN c) tam giác ADE cân đ) Gọi I là trung điểm của BC .Chứng tỏ rằng AI,MD,NE cũng đi qua 1 điểm.
tam giác abc cân tại a. trên bc lấy e và d sao cho bd=ce<bc:2.đường thẳng kẻ từ d vuông góc với bc cắt ab ở m . đường thẳng kẻ từ e vuông góc với bc cắt ac ở n. cmr
a. dm=en
b. em=dn
c. tam giác abc cân
giúp vs. chìu kiểm tra rồi
Cho tam giác ABC cân tại A. Trên cạnh Ab lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Qua D và E kẻ các đường thẳng vuông góc với BC lần lượt tại M và N
a) CMR: BM=CN
b)Gọi I là giao điểm của BC và DE. CHứng minh DE=2DI
c)Kẻ AH vuông góc với BC tại H. Đường thẳng đi qua I và vuông góc với DE cắt AH tại K. Tính số đo góc DBK
1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.
a) Chứng minh: KE // BC
b) Chứng minh: tam giác DEF đều
2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.
a) Chứng minh: BH = AK
b) Chứng minh: tam giác MHK vuông cân.
3) Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Trên tia đối tia MB lấy N sao cho MB = MN. Đường thẳng qua B // AC cắt NC ở P. Vẽ phân giác BD của góc ABM. Qua D kẻ đường thẳng BM cắt BM ở H và cắt CP ở K.
a) Chứng minh: CN = CA
b) Chứng minh tam giác BPC vuông cân
c) Chứng minh: KH = KP
d) Tính góc DBK
e) Biết BC = 8cm. Tính chu vi tam giác DKC
Cho 3 điểm A,B,C ko thẳng hàng. Biết góc BAC= 750. Kẻ đường thẳng D đi qua A và // vs BC. Kẻ đường thẳng A đi qua B và vuông góc với đường thẳng D, đường thẳng A cắt đường thẳng D tại M. Kẻ đường thẳng B đi qua C và vuông góc với đường thẳng D, B cắt D tại E. Tính góc ABM+ACE
Cho ∆ABC cân tại A. Trên BC, lấy điểm D; trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M và N. Chứng minh rằng:
a) DM=EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN
c) Đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên BC
Mình đang cần ý b và ý c, mong mọi người giúp đỡ