Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Thành Đạt

1) Cho a,b,c là các số dương 
Tính giá trị nhỏ nhất của \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

2) Tập hợp các giá trị của x thỏa mãn:\(\left|x-1\right|+\left|1-x\right|=2\)

3) Cho a,b,c,là các số dương.Tính giá trị nhỏ nhất của \(B=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 23:41

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 23:35

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 23:43

3) Áp dụng câu 1) 


Các câu hỏi tương tự
Trương Krystal
Xem chi tiết
Đỗ Kim Lâm
Xem chi tiết
Nguyễn
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Xem chi tiết
quản đức phú
Xem chi tiết
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết