Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phi DU

1) cho a+b>. CMR: a4 +b4>\(\dfrac{\text{1}}{8}\)

2) Cho a,b,c là độ dài ba canh của tam giác. CMR:

\(\dfrac{\text{1}}{a+b-c}+\dfrac{\text{1}}{b+c-a}+\dfrac{\text{1}}{a+c-b}>=\dfrac{\text{1}}{a}+\dfrac{\text{1}}{b}+\dfrac{\text{1}}{c}\)

3) a2+b2 <= 2. CMR: a+b <= 2

Kuro Kazuya
27 tháng 2 2017 lúc 19:55

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

Lightning Farron
27 tháng 2 2017 lúc 18:07

câu 1: a+b>?

Thiên Tuyết Linh
27 tháng 2 2017 lúc 18:15

Câu 1: mik sửa đề tí

Ta có: a+b=1

a² +b² ≥ (a+b)²/2

<=> a² +b² ≥ 1/2(a² +b²) + ab

<=> 1/2(a² +b²) -ab ≥ 0

<=> 1/2(a-b)² ≥ 0 ( luôn đúng )

vậy a² + b² ≥ (a+b)²/2 = 1/2

tương tự thì

a^4 + b^4 ≥ (a² +b²)²/2 ≥ (1/2)²/2 = 1/8

vậy a^4 + b^4 ≥ 1/8

dấu = xảy ra <=> a=b=1/2

Trương Duệ
3 tháng 5 2017 lúc 15:30

Có dấu \(\ge\)đấy ko phải đánh >= đâu


Các câu hỏi tương tự
I Love Hoc24
Xem chi tiết
Phi DU
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Lê Phương Oanh
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Lovers
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Anh Quân
Xem chi tiết