Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quân

CMR : a,b,c là các số dương bất kì,ta có :

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

Võ Đông Anh Tuấn
27 tháng 3 2017 lúc 11:04

Có thể giả thiết \(a\ge b\ge c\). Khi đó : \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b+c}-\dfrac{1}{2}+\dfrac{b}{c+a}-\dfrac{1}{2}+\dfrac{c}{a+b}-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\dfrac{a-b+a-c}{b+c}+\dfrac{b-c+b-a}{c+a}+\dfrac{c-a+c-b}{a+b}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)+\left(c-a\right)\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)\ge0\)

BĐT thức sau cùng đúng với giả thiết ban đầu .

Trần Băng Băng
27 tháng 3 2017 lúc 11:09

Ta có bài toán phụ: (a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\))>=9

Từ đó suy ra: (a+b+b+c+c+a)(\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\))>=9

=>(2a+2b+2c)(\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\))>=9

=>\(\left(\dfrac{2a}{a+b}+\dfrac{2b}{a+b}+\dfrac{2c}{a+b}\right)+\left(\dfrac{2b}{b+c}+\dfrac{2a}{b+c}+\dfrac{2c}{b+c}\right)\)+\(\left(\dfrac{2a}{c+a}+\dfrac{2b}{c+a}+\dfrac{2c}{c+a}\right)\)>=9

=>\(\dfrac{2.\left(a+b\right)}{a+b}+\dfrac{2c}{a+b}+\dfrac{2\left(b+c\right)}{b+c}+\dfrac{2a}{b+c}+\dfrac{2\left(c+a\right)}{c+a}+\dfrac{2b}{c+a}\)>=9

=>\(\dfrac{2c}{a+b}+\dfrac{2a}{b+c}+\dfrac{2b}{a+c}\)+2+2+2>=9

=>\(\dfrac{2c}{a+b}+\dfrac{2a}{b+c}+\dfrac{2b}{a+c}\)>=3

=>2\(\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}\right)\)>=3

=>\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)>=\(\dfrac{3}{2}\)

=>đpcm


Các câu hỏi tương tự
Trần Huỳnh Cẩm Hân
Xem chi tiết
Lovers
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Phi DU
Xem chi tiết
Lê Phương Oanh
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Thảo Đỗ Phương
Xem chi tiết
Trần Băng Băng
Xem chi tiết
I Love Hoc24
Xem chi tiết