ko xoắn 1 dòng thôi
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
ko xoắn 1 dòng thôi
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
CMR : a,b,c là các số dương bất kì,ta có :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) với \(a\ge b\ge c>0\)
Cho a,b,c>0. CMR:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)>=a+b+c
Bài tập 1:
Cho x,y > 0. Chứng minh rằng: ( 3x+3y )(\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\)) ≥4
Bài tập 2: Cho a,b,c> 0. Chứng minh rằng:
a) \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)≤\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
b) \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)≤\(\dfrac{3}{2}\)
Bài 1: Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
\(\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)<2
Bài 2: Cho a,b,c là các số dương thỏa mãn \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2-a^2+c^2}{2bc}+\dfrac{c^2-b^2+a^2}{2ac}\)>1
Chứng minh rằng a,b,c là 3 cạnh của tam giác
Bài 3:Cho a,b,c>0. Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}+\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{b+a}{c}\)
1) cho a+b>. CMR: a4 +b4>\(\dfrac{\text{1}}{8}\)
2) Cho a,b,c là độ dài ba canh của tam giác. CMR:
\(\dfrac{\text{1}}{a+b-c}+\dfrac{\text{1}}{b+c-a}+\dfrac{\text{1}}{a+c-b}>=\dfrac{\text{1}}{a}+\dfrac{\text{1}}{b}+\dfrac{\text{1}}{c}\)
3) a2+b2 <= 2. CMR: a+b <= 2
Cho a,b,c > 1. CMR: \(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\text{ ≥ }48\)
BT1:Cho x,y>0. Chứng minh rằng: (3x+3y)(\(\dfrac{1}{2x+y}\)+\(\dfrac{1}{x+2y}\)) >= 4
BT2:Cho a,b,c>0. Chứng minh rằng:
a) \(\dfrac{1}{2a+b+c}\)+\(\dfrac{1}{a+2b+c}\)+\(\dfrac{1}{a+b+2c}\)=<4
b)\(\dfrac{a}{1+a^2}\)+\(\dfrac{b}{1+b^2}\)+\(\dfrac{c}{1+c^2}\)=<\(\dfrac{3}{2}\)
Cho a,b,c > 0 CMR:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\)
(dùng BĐT Cosi)
Giúp mình với nha!!