Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dung Đặng Phương

1) Cho a, b, c nguyên thỏa mãn: \(a^2+b^2=c^2\left(1+ab\right)\). Chứng minh rằng: \(a\ge c;b\ge c\)

2) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng: \(a^2+b^2+c^2\ge abc\)

3) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng ít nhất hai bất đẳng thức trong các bất đẳng thức sau là sai:

\(\frac{2}{a}+\frac{3}{b}+\frac{6}{c}\ge6\)\(\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\ge6\)\(\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\ge6\)

Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 19:27

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 21:54

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.


Các câu hỏi tương tự
Tô Hoài Dung
Xem chi tiết
Hoàng Thị Mai Hương
Xem chi tiết
phan tuấn anh
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
tống thị quỳnh
Xem chi tiết
DOC CO CAU BAI
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
không cần biết
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết