1) Từ \(-2\le a,b,c\le3\) suy ra :
\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)
\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)
\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)
Cộng các bđt trên theo vế ta có đpcm
2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)
Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)
Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)
\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)
Vậy Min P = 64 tại x = y = z = 1/3