\(1\cdot99+2\cdot98+3\cdot97+...+50\cdot50\)
\(=1\left(100-1\right)+2\left(100-2\right)+...+50\left(100-50\right)\)
\(=100\left(1+2+...+50\right)-\left(1^2+2^2+...+50^2\right)\)
\(=100\cdot\dfrac{50\cdot51}{2}-\dfrac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}\)
\(=100\cdot25\cdot51-\dfrac{50\cdot51\cdot101}{6}\)
\(=2500\cdot51-425\cdot101\)
=127500-42925
=84575