Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$
$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$4A=\frac{1}{4}(1-3^{2024})$
$A=\frac{1}{16}(1-3^{2024})$