\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-3x}{x-1}=\dfrac{2^2-3\cdot2}{2-1}=\dfrac{4-6}{1}=-2\)
\(f\left(2\right)=3a-5\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}3a-5\)
Để \(\lim\limits_{x\rightarrow2}f\left(x\right)\) tồn tại thì 3a-5=-2
=>3a=3
=>a=1