Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Chà sao lại đặt trong lớp 1 vậy em

1.35

\(x=\dfrac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt{9-4\sqrt{5}}-2}=\dfrac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt{5-2.2.\sqrt{5}+4}-2}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt{\left(\sqrt{5}-2\right)^2}-2}=\dfrac{\left|\sqrt{3}+1\right|-\sqrt{3}}{\left(\sqrt{5}+2\right)\left|\sqrt{5}-2\right|-2}\)

\(=\dfrac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\dfrac{1}{5-4-2}=\dfrac{1}{-1}=-1\)

\(\Rightarrow P=\left(\left(-1\right)^2-1+1\right)^{2017}=1^{2017}=1\)

1.36.

\(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\right)\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\left(\dfrac{1}{2\sqrt{x}+3}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}+1\right)}{\sqrt{x}+1}.\dfrac{1}{2\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}\)

b.

\(\dfrac{x}{4}=\sqrt{\dfrac{1009+\sqrt{2017}}{2}}-\sqrt{\dfrac{1009-\sqrt{2017}}{2}}\)

\(x=4\sqrt{\dfrac{1009+\sqrt{2017}}{2}}-4\sqrt{\dfrac{1009-\sqrt{2017}}{2}}\)

\(x=2.\sqrt{2018+2\sqrt{2017}}-2\sqrt{2018-2\sqrt{2017}}\)

\(x=2\sqrt{2017+2\sqrt{2017}+1}-2\sqrt{2017-2\sqrt{2017}+1}\)

\(x=2\sqrt{\left(\sqrt{2017}+1\right)^2}-2\sqrt{\left(\sqrt{2017}-1\right)^2}\)

\(x=2\left|\sqrt{2017}+1\right|-2\left|\sqrt{2017}-1\right|\)

\(x=2\left(\sqrt{2017}+1\right)-2\left(\sqrt{2017}-1\right)=4\)

\(\Rightarrow A=\dfrac{\sqrt{4}+1}{2\sqrt{4}+3}=\dfrac{3}{7}\)

1.37

\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\left(3x-6\sqrt{x}\right)+\left(x+3\sqrt{x}+2\right)-\left(5\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+2}\)

b.

\(x=\sqrt[3]{1+\dfrac{\sqrt[]{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt[]{84}}{9}}\)

\(\Rightarrow x^3=\left(\sqrt[3]{1+\dfrac{\sqrt[]{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt[]{84}}{9}}\right)^3\)

Áp dụng HĐT: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=2+3\sqrt[3]{\left(1+\dfrac{\sqrt[]{84}}{9}\right)\left(1-\dfrac{\sqrt[]{84}}{9}\right)}.\left(\sqrt[3]{1+\dfrac{\sqrt[]{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt[]{84}}{9}}\right)\)

\(\Rightarrow x^3=2+3.\sqrt[3]{1-\dfrac{84}{81}}.x\)

\(\Rightarrow x^3=2-x\)

\(\Rightarrow x^3+x-2=0\)

\(\Rightarrow\left(x-1\right)\left(x^2+x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+x+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1\)

\(\Rightarrow P=\dfrac{4\sqrt[]{1}}{\sqrt[]{1}+2}=\dfrac{4}{3}\)

nguyễn phan bảo ngọc
27 tháng 10 lúc 18:25

cái này mà lớp 1 á t lớp 6 còn chưa thấy


Các câu hỏi tương tự
Hattori Heiji
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach