Lời giải:
\(d_n=\underbrace{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}_{n}; d_{n-1}=\underbrace{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}_{n-1}\)
$\Rightarrow d_{n-1}< d_n$ với mọi $n\in\mathbb{N}>1$.
\(\Rightarrow d_n^2=6+\underbrace{\sqrt{6+...+\sqrt{6}}}_{n-1}=6+d_{n-1}< 6+d_n\)
$\Leftrightarrow d_n^2-6-d_n<0$
$\Leftrightarrow (d_n-3)(d_n+2)<0$
Mà $d_n+2>0$ với mọi $d_n>0$
$\Rightarrow d_n-3<0$
$\Rightarrow d_n<3$