Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thái Hoàng
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 23:22

1.

\(\lim\left(\sqrt{9^n-2.3^n}-3^n+\dfrac{1}{2021}\right)\)

\(=\lim\left(\dfrac{\left(\sqrt{9^n-2.3^n}-3^n\right)\left(\sqrt{9^n-2.3^n}+3^n\right)}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)

\(=\lim\left(\dfrac{-2.3^n}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)

\(=\lim\left(\dfrac{-2.3^n}{3^n\left(\sqrt{1-\dfrac{2}{3^n}}+1\right)}+\dfrac{1}{2021}\right)\)

\(=\lim\left(\dfrac{-2}{\sqrt{1-\dfrac{2}{3^n}}+1}+\dfrac{1}{2021}\right)\)

\(=\dfrac{-2}{1+1}+\dfrac{1}{2021}=-\dfrac{2020}{2021}\)

Nguyễn Việt Lâm
14 tháng 3 2022 lúc 23:28

2.

\(AP=4PB=4\left(AB-AP\right)=4AB-4AP\)

\(\Rightarrow5AP=4AB\Rightarrow AP=\dfrac{4}{5}AB\)

\(\Rightarrow\overrightarrow{AP}=\dfrac{4}{5}\overrightarrow{AB}\)

\(CD=5CQ=5\left(CD-DQ\right)\Rightarrow5DQ=4CD\Rightarrow DQ=\dfrac{4}{5}CD\) 

\(\Rightarrow\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{CD}\)

Ta có:

\(\overrightarrow{PQ}=\overrightarrow{PA}+\overrightarrow{AD}+\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)

\(=-\dfrac{4}{5}\left(\overrightarrow{AD}+\overrightarrow{DB}\right)+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}=-\dfrac{4}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{DB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)

\(=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\left(\overrightarrow{CD}+\overrightarrow{DB}\right)=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CB}\)

\(=\dfrac{1}{5}\overrightarrow{AD}+\dfrac{4}{5}\overrightarrow{BC}\)

Mà \(\overrightarrow{AD};\overrightarrow{BC}\) không cùng phương\(\Rightarrow\overrightarrow{AD};\overrightarrow{BC};\overrightarrow{PQ}\) đồng phẳng

Nguyễn Việt Lâm
14 tháng 3 2022 lúc 23:32

3.

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{2x-1}-\sqrt[3]{3x-2}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{2x-1}-1+1-\sqrt[3]{3x-2}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(\sqrt[]{2x-1}-1\right)\left(\sqrt[]{2x-1}+1\right)}{\sqrt[]{2x-1}+1}+\dfrac{\left(1-\sqrt[3]{3x-2}\right)\left(1+\sqrt[3]{3x-2}+\sqrt[3]{\left(3x-2\right)^2}\right)}{1+\sqrt[3]{3x-2}+\sqrt[3]{\left(3x-2\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{2x-1-1}{\sqrt[]{2x-1}+1}+\dfrac{1-\left(3x-2\right)}{1+\sqrt[3]{3x-2}+\sqrt[3]{\left(3x-2\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{2\left(x-1\right)}{\sqrt[]{2x-1}+1}-\dfrac{3\left(x-1\right)}{1+\sqrt[3]{3x-2}+\sqrt[3]{\left(3x-2\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\sqrt[]{2x-1}+1}-\dfrac{3}{1+\sqrt[3]{3x-2}+\sqrt[3]{\left(3x-2\right)^2}}\right)\)

\(=\dfrac{2}{1+1}-\dfrac{3}{1+1+1}=0\)

Nguyễn Việt Lâm
14 tháng 3 2022 lúc 23:35

4.

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt[]{3x+1}-2}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\sqrt[]{3x+1}-2\right)\left(\sqrt[]{3x+1}+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt[]{3x+1}+2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt[]{3x+1}+2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3}{\left(x+1\right)\left(\sqrt[]{3x+1}+2\right)}\)

\(=\dfrac{3}{2\left(2+2\right)}=\dfrac{3}{8}\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{a\left(x^2-2\right)}{x-3}=\dfrac{a\left(1-2\right)}{1-3}=\dfrac{a}{2}\)

\(f\left(1\right)=\dfrac{a\left(1-2\right)}{1-3}=\dfrac{a}{2}\)

Hàm liên tục tại \(x=1\) khi và chỉ khi:

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\Leftrightarrow\dfrac{a}{2}=\dfrac{3}{8}\)

\(\Rightarrow a=\dfrac{3}{4}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết