Cho hình chóp S.ABCD có đáy hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN,SC) bằng
A. 45 o
B. 30 o
C. 90 o
D. 60 o
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm cạnh SC. Gọi α là số đo của góc hợp bởi hai đường thẳng AM và SB. Khi đó cos α bằng




Cho hình chóp tứ giác đều S . A B C D có tất cả các cạnh bằng a. Gọi M là trung điểm SD (tham khảo hình vẽ bên) Tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng

A. 2 2
B. 3 3
C. 2 3
D. 1 3
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và N lần lượt là trung điểm của hai cạnh SA và BC, biết MN = a 6 2 . Khi đó giá trị sin của góc giữa đường thẳng MN và mặt phẳng (SBD) bằng
A. 2 5 .
B. 3 3 .
C. 5 5 .
D. 3 .
Cho hình chóp tứ giác đều S . A B C D có cạnh đáy bằng a tâm O. Gọi M, N lần lượt là trung điểm của SA và BC. Góc giữa đường thẳng MN và mặt phẳng A B C D bằng 60 0 . Tính cosin góc giữa đường thẳng và mặt phẳng ( S B D ) .




Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) bằng 60 0 . Khoảng cách giữa hai đường thẳng BC và DM là:




Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Góc giữa hai đường thẳng MN và BD bằng
A. 60 °
B. 90 °
C. 45 °
D. 75 °
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, góc giữa mặt bên và mặt đáy bằng 60 0 . Gọi M là trung điểm của cạnh SA. Khoảng cách giữa hai đường thẳng BM và SC bằng

![]()

![]()
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của B C , S A , α là góc tạo bởi đường thẳng EM và mặt phẳng (SBD), tan α bằng:
A. 1
B. 2
C. 2
D. 3