Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 4 và mặt phẳng (P): x-y+2z-1=0 Gọi M là một điểm bất kì trên mặt cầu (S) Khoảng cách từ M đến (P) có giá trị nhỏ nhất bằng
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 4 và mặt phẳng (P): x-y+2z-1=0. Gọi M là một điểm bất kì trên mặt cầu (S). Khoảng cách từ M đến (P) có giá trị nhỏ nhất bằng
A. 4 6 3 - 2
B. 0
C. 6 - 2
D. 2 6 - 2
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3
Trong không gian cho Oxyz, mặt cầu (S) có phương trình x 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 25 . Tâm mặt cầu (S) là điểm
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 4 ) 2 + ( y - 2 ) 2 + ( z - 4 ) 2 = 1 . Điểm M(a;b;c) thuộc (S). Tìm giá trị nhỏ nhất của a 2 + b 2 + c 2
A. 25
B. 29
C. 24
D. 26
Trong không gian tọa độ Oxyz, mặt cầu (S): ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9 có tâm và bán kính là
A. I(4;-5;6), R=5
B. I(-4;5;-6), R=81
C. I(4;-5;6)
D. I(-4;5;-6), R=3
Trong không gian tọa độ Oxyz, mặt cầu: (S): ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9 có tâm và bán kính lần lượt là
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 48 Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C). Khối nón (N) có đỉnh là tâm của (S), đường tròn đáy là (C) cỏ thể tích lớn nhất bằng
Trong không gian Oxyz, cho mặt cầu (S): (x - 2) 2 + (y + 1) 2 + (z + 2) 2 = 4 và mặt phẳng (P): 4x - 3y + m = 0. Với những giá trị nào của m thì mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung?
A. m=-1
B. m=9 hoặc m=-31
C. m=1 hoặc m=21
D. m=-1 hoặc m=-21
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y+2)²+ (z-3)²=27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.