Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp

Đề sai rồi bạn

Bình luận (0)

a) Xét (O) có

ΔBDC nội tiếp đường tròn(gt)

BC là đường kính

Do đó: ΔBDC vuông tại D(Định lí)

Xét (O) có 

ΔBEC nội tiếp đường tròn(gt)

BC là đường kính

Do đó: ΔBEC vuông tại E(Định lí)

b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{BAD}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)

Bình luận (0)

a) Ta có: OA⊥d(gt)

d//d'(gt)

Do đó: OA⊥d'(Định lí 1 từ vuông góc tới song song)

hay AE⊥BE

Xét tứ giác ABFE có 

\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có 

\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)
tthnew
26 tháng 3 lúc 18:35

Mình đoán M là một điểm nằm ngoài đường tròn và câu a là chứng minh MBOC nội tiếp. Lần sau viết đề kỹ hơn bạn nha.

a) Do MB, MC là hai tiếp tuyến của (O) nên ^MBO+^MCO=90+90=180o

b) M là giao điểm 2 tiếp tuyến MB, MC với (O) tức $MB=MC;OB=OC(=R)$ vậy $OM$ là đường trung trực BC. Mà $K$ thuộc $OM$ nên \(KB=KC\Rightarrow \angle KBC=\angle KCB=\text{sđc} BC=\angle MBK.\)

Vậy BK là tia phân giác $\angle MBC.$

c) Theo câu b ta có BK là tia phân giác $\angle MBC.$ Theo tính chất đường phân giác \(\dfrac{KI}{KM}=\dfrac{BI}{BM}\)

d) Hạ KX vuông góc với BM. Do câu b nên ta có ^IBK=^XBK; BK chung vậy $\Delta IBK=\Delta IXB \Rightarrow KI=KX.$ (1)

Hạ KY vuông góc với CM. Tương tự câu b ta chứng minh được CK là phân giác ICY.

Tương tự cách chứng minh ở (1) ta cũng có KI=KY. (2)

Từ (1) và (2) KI=KX=KY tức K cách đều ba cạnh của tam giác. Vậy K là tâm nội tiếp $\Delta MBC.$ 

Bình luận (1)
tthnew
26 tháng 3 lúc 18:15

D nằm ở đâu? M nằm ở đâu?

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN