Bài 2: Hai đường thẳng vuông góc

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 13:38

Lời giải:

\(\varphi=(AB,CD')=(AB, BA')=\widehat{ABA'}=\frac{1}{2}\widehat{ABB'}=\frac{1}{2}.120^0=60^0\)

Đáp án B. 

 

trần khánh dương
Xem chi tiết
Crackinh
Xem chi tiết
Etermintrude💫
15 tháng 3 2021 lúc 20:32

undefined

Hà Như Ngọc
Xem chi tiết
Lê Ng Hải Anh
8 tháng 4 2021 lúc 21:56

undefined

Trịnh Hồng Châu
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2022 lúc 8:43

1.

a.

 \(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(\Rightarrow CD\perp SD\Rightarrow\Delta SCD\) vuông tại D

b. 

Do H là trung điểm AD, K là trung điểm SA

\(\Rightarrow KH\) là đường trung bình tam giác SAD

\(\Rightarrow KH||SD\Rightarrow KH||\left(SCD\right)\)

H là trung điểm AD, M là trung điểm BC \(\Rightarrow HM||CD\)

\(\Rightarrow HM||\left(SCD\right)\)

Mà HM cắt KH tại H

\(\Rightarrow\left(HKM\right)||\left(SCD\right)\)

c.

Qua K kẻ đường thẳng song song AB cắt SB tại N

\(\Rightarrow N=\left(HKM\right)\cap SB\)

\(\left\{{}\begin{matrix}KN||AB\\HM||AB\end{matrix}\right.\) \(\Rightarrow KN||HM\) (1)

Mặt khác \(\left\{{}\begin{matrix}HM||CD\\CD||\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow HM\perp\left(SAD\right)\Rightarrow HM\perp KH\) (2)

(1);(2) \(\Rightarrow\) HKNM là hình thang vuông

Nguyễn Việt Lâm
27 tháng 1 2022 lúc 8:43

Hình vẽ bài 1:

undefined

Nguyễn Việt Lâm
27 tháng 1 2022 lúc 8:51

2.

a.

Ta có: \(\left\{{}\begin{matrix}SM\perp\left(ABCD\right)\Rightarrow SM\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow AB\perp SA\) 

\(\Rightarrow\Delta SAB\) vuông tại A

Lại có \(\left\{{}\begin{matrix}CD||AB\\AB\perp\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\)

\(\Rightarrow\Delta SCD\) vuông tại D

b.

Ta có: \(\overrightarrow{AN}.\overrightarrow{BM}=\left(\overrightarrow{AD}+\overrightarrow{DN}\right)\left(\overrightarrow{BA}+\overrightarrow{AM}\right)=\left(\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}\right)\left(-\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\right)\)

\(=-\overrightarrow{AD}.\overrightarrow{AB}+\dfrac{1}{2}AD^2-\dfrac{1}{2}AB^2+\dfrac{1}{4}\overrightarrow{AB}.\overrightarrow{AD}=0\)

\(\Rightarrow AN\perp BM\) (1)

Mà \(SM\perp\left(ABCD\right)\Rightarrow SM\perp AN\) (2)

(1);(2) \(\Rightarrow AN\perp\left(SMB\right)\)

09 Lê Quang HIếu
Xem chi tiết
Ami Mizuno
11 tháng 2 2022 lúc 21:18

Bạn vẽ hình giúp mình nha ^^

Xét (ABCD), kẻ \(MH\perp AB\left(H\in AB\right)\)

Xét (SAB), kẻ HF//SB(\(F\in SA\))

Có: \(\left\{{}\begin{matrix}MH\perp AB\\MH\perp SA\end{matrix}\right.\)\(\Rightarrow MH\perp\left(SAB\right)\)\(\Rightarrow MH\perp HF\)

Ta có: \(\alpha=\left(\stackrel\frown{SB,AM}\right)=\left(\stackrel\frown{HF,MH}\right)=arccos\left(\dfrac{HA}{HF}\right)\)

Xét \(\Delta AHF\) vuông tại A có: \(HF^2=HA^2+AF^2=a^2+\left(\dfrac{a}{2}\right)^2=\dfrac{5}{4}a^2\Rightarrow HF=\dfrac{a\sqrt{5}}{2}\)

\(\Rightarrow\alpha=arccos\left(\dfrac{HA}{HF}\right)=arccos\left(\dfrac{2a}{a\sqrt{5}}\right)\approx26,57^o\) \(\Rightarrow cos\alpha=\dfrac{HA}{HF}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

Mang Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 21:29

Chọn A

Nguyễn Việt Lâm
10 tháng 3 2022 lúc 22:34

Theo tính chất hình lập phương, ta có:

\(C'D'\perp\left(BB'C'C\right)\Rightarrow C'D'\perp BC'\)

\(\Rightarrow\widehat{\left(C'D';BC'\right)}=90^0\)

Lê Thị Yến Linh (tôi)
Xem chi tiết
Ami Mizuno
22 tháng 3 2022 lúc 23:00

undefined

Ami Mizuno
22 tháng 3 2022 lúc 23:01

Bạn xem lại đề câu b giúp mình nha, vì hình chiếu của A không thể lên cạnh AB được và hai điểm H,K là hình chiếu của A không thể lên 1 cạnh được á