Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng a, \(\widehat{DAA'}\)=120o . Gọi \(\varphi=\left(\widehat{AB,CD'}\right)\). Khẳng định nào sau đây đúng
A. φ=\(90^o\)
B. φ=\(60^o\)
C. φ=\(30^o\)
D. φ=\(45^o\)
Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng a, \(\widehat{DAA'}\)=120o . Gọi \(\varphi=\left(\widehat{AB,CD'}\right)\). Khẳng định nào sau đây đúng
A. φ=\(90^o\)
B. φ=\(60^o\)
C. φ=\(30^o\)
D. φ=\(45^o\)
Lời giải:
\(\varphi=(AB,CD')=(AB, BA')=\widehat{ABA'}=\frac{1}{2}\widehat{ABB'}=\frac{1}{2}.120^0=60^0\)
Đáp án B.
Cho hình chóp SABCD có đáy là hình thoi cạnh a, góc BAD = 120. Biết SA=SC=a,
SB=SD= 3a/2. Gọi M, I, J lần lượt là trung điểm AB, SD,CD; G là trọng tâm tam giác SAB.
Tính góc giữa hai đường thẳng:
1) SA và DC 2)SB và AD 3) SM và BD 4) BG và IJ
giúp mình câu số 4 với
Cho tứ diện ABCD có AB = AC = AD và \(\widehat{BAC}=\widehat{BAD}=60^o\) ; \(\widehat{CAD}=90^o\).
Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ AB và IJ.
Bài 1 : cho hình chóp SABCD có đáy ABCD là hình vuông và SH vuông góc với mặt phẳng ( ABCD ) tại trung điểm H của cạnh AD .
a, CM tam giác SCD vuông
b, Gọi M,K là trung điểm BC , SA . Chứng minh ( SCD ) song song ( HKM )
c, ( HKM ) cắt SB tại N . Chứng minh HKMN là hình thang vuông
Bài 2 : cho hình chóp SABCD đáy là hình vuông và SM vuông với ( ABCD ) với M là trung điểm AD .
a, CM : tam giác SAB và tam giác SCD vuông
b, Gọi N là trung điểm CD , CM AN vuông góc với ( SMB)
giúp mình với nha , cảm ơn nhiều ạ
1.
a.
\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(\Rightarrow CD\perp SD\Rightarrow\Delta SCD\) vuông tại D
b.
Do H là trung điểm AD, K là trung điểm SA
\(\Rightarrow KH\) là đường trung bình tam giác SAD
\(\Rightarrow KH||SD\Rightarrow KH||\left(SCD\right)\)
H là trung điểm AD, M là trung điểm BC \(\Rightarrow HM||CD\)
\(\Rightarrow HM||\left(SCD\right)\)
Mà HM cắt KH tại H
\(\Rightarrow\left(HKM\right)||\left(SCD\right)\)
c.
Qua K kẻ đường thẳng song song AB cắt SB tại N
\(\Rightarrow N=\left(HKM\right)\cap SB\)
\(\left\{{}\begin{matrix}KN||AB\\HM||AB\end{matrix}\right.\) \(\Rightarrow KN||HM\) (1)
Mặt khác \(\left\{{}\begin{matrix}HM||CD\\CD||\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow HM\perp\left(SAD\right)\Rightarrow HM\perp KH\) (2)
(1);(2) \(\Rightarrow\) HKNM là hình thang vuông
2.
a.
Ta có: \(\left\{{}\begin{matrix}SM\perp\left(ABCD\right)\Rightarrow SM\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow AB\perp SA\)
\(\Rightarrow\Delta SAB\) vuông tại A
Lại có \(\left\{{}\begin{matrix}CD||AB\\AB\perp\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\)
\(\Rightarrow\Delta SCD\) vuông tại D
b.
Ta có: \(\overrightarrow{AN}.\overrightarrow{BM}=\left(\overrightarrow{AD}+\overrightarrow{DN}\right)\left(\overrightarrow{BA}+\overrightarrow{AM}\right)=\left(\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}\right)\left(-\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\right)\)
\(=-\overrightarrow{AD}.\overrightarrow{AB}+\dfrac{1}{2}AD^2-\dfrac{1}{2}AB^2+\dfrac{1}{4}\overrightarrow{AB}.\overrightarrow{AD}=0\)
\(\Rightarrow AN\perp BM\) (1)
Mà \(SM\perp\left(ABCD\right)\Rightarrow SM\perp AN\) (2)
(1);(2) \(\Rightarrow AN\perp\left(SMB\right)\)
Cho hình chóp S.ABCD đáy là hình vuông có cạnh 2a. Cạnh SA=a và vuông góc với đáy. Gọi M là trung điểm của CD. Tính cos α với α là góc tạo bởi 2 đường thắng SB, AM.
Bạn vẽ hình giúp mình nha ^^
Xét (ABCD), kẻ \(MH\perp AB\left(H\in AB\right)\)
Xét (SAB), kẻ HF//SB(\(F\in SA\))
Có: \(\left\{{}\begin{matrix}MH\perp AB\\MH\perp SA\end{matrix}\right.\)\(\Rightarrow MH\perp\left(SAB\right)\)\(\Rightarrow MH\perp HF\)
Ta có: \(\alpha=\left(\stackrel\frown{SB,AM}\right)=\left(\stackrel\frown{HF,MH}\right)=arccos\left(\dfrac{HA}{HF}\right)\)
Xét \(\Delta AHF\) vuông tại A có: \(HF^2=HA^2+AF^2=a^2+\left(\dfrac{a}{2}\right)^2=\dfrac{5}{4}a^2\Rightarrow HF=\dfrac{a\sqrt{5}}{2}\)
\(\Rightarrow\alpha=arccos\left(\dfrac{HA}{HF}\right)=arccos\left(\dfrac{2a}{a\sqrt{5}}\right)\approx26,57^o\) \(\Rightarrow cos\alpha=\dfrac{HA}{HF}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
Giúp e chi tiết câu 24 đi ạ
Theo tính chất hình lập phương, ta có:
\(C'D'\perp\left(BB'C'C\right)\Rightarrow C'D'\perp BC'\)
\(\Rightarrow\widehat{\left(C'D';BC'\right)}=90^0\)
Cho hình chố SABC, có đáy ABC là tam giác vuông cân tại B, SA vuông (ABC). Gọi M là trung điểm của AC. a, Chứng minh rằng (SBM) vuông (SAC) b, Gọi H,K lần lượt kaf hình chiếu của A lên AB. CmR (AHK) vuông (SBC)
Bạn xem lại đề câu b giúp mình nha, vì hình chiếu của A không thể lên cạnh AB được và hai điểm H,K là hình chiếu của A không thể lên 1 cạnh được á