xét tính tăng giảm của dãy (Un)
(Un) = \(\dfrac{u_n+2}{4^n}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
xét tính tăng giảm của dãy (Un)
(Un) = \(\dfrac{u_n+2}{4^n}\)
Xét tính bị chặn:
\(u_n=\dfrac{n^2+1}{2n^2-3}\)
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy
Xét tính tăng giảm của dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{3u_n+1}{u_n+1}\end{matrix}\right.\)
mng giúp mình bài 5,6 với ạ.
Xét tính tăng giảm của dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{3u_n+1}{u_n+1}\end{matrix}\right.\)
Trước hết ta chứng minh \(0< u_n\le1+\sqrt{2}\):
Ta thấy: \(0< u_1=2\le1+\sqrt{2}\)
Giả sử điều này đúng đến \(0< u_k\le1+\sqrt{2}\)
Ta có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}>0\)
Lại có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}=3-\dfrac{2}{u_k+1}\le3-\dfrac{2}{1+\sqrt{2}}\le3-1=2\le1+\sqrt{2}\)
\(\Rightarrow0< u_{k+1}\le1+\sqrt{2}\)
Theo nguyên lí quy nạp, ta được: \(0< u_n\le1+\sqrt{2}\)
Khi đó ta có:
\(u_{n+1}-u_n=\dfrac{3u_n+1}{u_n+1}-u_{n\text{}}\)
\(=\dfrac{3u_n+1-u_n^2-u_n}{u_n+1}\)
\(=\dfrac{-u_n^2+2u_n+1}{u_n+1}\)
\(=-\dfrac{\left(u_n-1-\sqrt{2}\right)\left(u_n-1+\sqrt{2}\right)}{u_n+1}\ge0\)
\(\Rightarrow u_{n+1}\ge u_n\)
\(\Rightarrow\) Dãy tăng.
Tìm x biết:
\(\dfrac{x-1}{x}+\dfrac{x-2}{x}+....+\dfrac{1}{x}=3\)
Lời giải:
ĐK: $x\neq 0$
PT $\Leftrightarrow (1-\frac{1}{x})+(1-\frac{2}{x})+....+(1-\frac{x-1}{x})=3$
$\Leftrightarrow (x-1)-(\frac{1}{x}+\frac{2}{x}+...+\frac{x-1}{x})=3$
$\Leftrightarrow (x-1)-\frac{1+2+...+(x-1)}{x}=3$
$\Leftrightarrow (x-1)-\frac{x(x-1)}{2x}=3$
$\Rightarrow x^2-7x=0$
$\Rightarrow x=7$ (do $x\neq 0$)
Xét tính chặn của 2n+1/n+2
Cho dãy un xác định bởi
\(\left\{{}\begin{matrix}x_1=3\\x_{n+1}=\dfrac{1}{2}x_2+2^{n-2}\end{matrix}\right.\) với n = 1,2,...
a) Tìm tất cả các số hạng là các số nguyên trong dãy trên
b) Tìm số hạng tổng quát x0