Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quang Bin
Xem chi tiết
Nguyễn Bình Nguyên
24 tháng 3 2016 lúc 19:00

- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị

- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\) 

hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)

Mai Xuân Bình
Xem chi tiết
Lê Thành Công
25 tháng 3 2016 lúc 10:45

Xét \(f'\left(x\right)=4x^3+3mx^2+2mx+m=0\Leftrightarrow m\left(3x^2+2x+1\right)=-4x^3\)

                 \(\Leftrightarrow\frac{-4x^3}{3x^2+2x+1}\) 

Xét hàm số : \(g\left(x\right)=\frac{-4x^3}{3x^2+2x+1}\) có tập xác định : \(D_g=!\)

\(g'\left(x\right)=\frac{-4x^2\left(3x^2+2x+1\right)}{\left(3x^2+2x+1\right)^2}=\frac{-4x^2\left[2\left(x+1\right)^2+x^2+1\right]}{\left(3x^2+2x+1\right)^2}\le0\) với mọi \(x\in!\)

\(\lim\limits g\left(x\right)_{x\rightarrow\infty}=\lim\limits_{x\rightarrow\infty}\frac{-4x}{3+\frac{2}{x}+\frac{1}{x^2}}=\infty\)

Nghiệm của phương trình \(f'\left(x\right)=0\) cũng là giao điểm của đường thẳng y=m với đồ thị y = g(x)

Lập bảng biến thiên ta có đường thẳng y=m cắt y =g(x) tại đúng 1 điểm 

\(\Rightarrow f'\left(x\right)=0\)

 có đúng 1 nghiệm

Vậy hàm số y=f(x) không thể đồng thời có cực đại và cực tiểu

Phạm Quốc Cường
Xem chi tiết
Hồ Nhật Phi
10 tháng 5 2022 lúc 11:33

y'=3x2-2(m+2)x+1-m.

\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).

|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).

Thu Hiền
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:33

\(\Leftrightarrow y'=2x\left(2mx^2+m^2-9\right)=2.x.g\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow\frac{m^2-9}{2m}<0\) \(\Leftrightarrow\) m<-3 và 0<m<3

Hoàng Huệ Cẩm
Xem chi tiết
Nguyễn Bình Nguyên
24 tháng 3 2016 lúc 19:30

Ta có \(y'=3x^2-4\left(m-1\right)x+9\)

y' là tam thức bậc hai nên hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) khi và ch ỉ khi y' có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=4\left(m-1\right)^2-27>0\) \(\Leftrightarrow\)\(\begin{cases}m>1+\frac{3\sqrt{3}}{2}\\m<1-\frac{3\sqrt{3}}{2}\end{cases}\) (1)

Theo Viet \(x_1+x_2=\frac{4\left(m-1\right)}{3}\)\(x_1x_2=3\)

Khi đó \(\left|x_1-x_2\right|=2\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

                                  \(\Leftrightarrow\frac{16\left(m-1\right)^2}{9}-12=4\)

ngo mai trang
Xem chi tiết
nguyen thi khanh hoa
15 tháng 10 2015 lúc 22:38

ta tính \(y'=3x^2-4x+1\)

\(y'=0\Rightarrow3x^2-4x+1=0\Rightarrow x=1;x=\frac{1}{3}\)

ta có 

ta có trong khoảng 2 nghiệm thì y' cùng dấu với hệ số a, ngoài khoảng 2 nghiệm trái dấu với hệ số a

suy ra f'(x)>0 với \(x\in\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\) suy ra hàm số  đồng biến trên \(\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\)

lại có f'(x)<0 với \(x\in\left(\frac{1}{3};1\right)\) suy ra hàm số nghịch biến trên \(\left(\frac{1}{3};1\right)\)

ngo mai trang
Xem chi tiết
nguyen thi khanh hoa
15 tháng 10 2015 lúc 22:51

ta tính \(y'=-3mx^2-6x+2-m\)

để hàm số nghịch biến trên R thì \(\)y'<0 với mọi x thuộc R  ta có 

y'<0 với mọi x thuộc R thì \(\begin{cases}-m

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:53

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:55

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

Nguyễn Hồng Anh
Xem chi tiết
Nguyễn Bình Nguyên
24 tháng 3 2016 lúc 19:39

Ta có \(y'=3x^2-6\left(m+1\right)x+9\)

Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là  \(x_1,x_2\)

\(\Leftrightarrow\) \(x^2-2\left(m+1\right)x+3=0\) có hai nghiệm phân biêt  \(x_1,x_2\) \(\Leftrightarrow\Delta'=\left(m+1\right)^2-3\Leftrightarrow\begin{cases}m>-1+\sqrt{3}\\m<-1-\sqrt{3}\end{cases}\) (1)Theo định lí Viet ta có  \(x_1+x_2=2\left(m+1\right)\) \(x_1,x_2=3\)Khi đó \(\left|x_1-x_2\right|\le2\)  \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le4\)                        \(\Leftrightarrow4\left(m+1\right)^2-12\le4\)                        \(\Leftrightarrow\left(m+1\right)^2\le4\)                        \(\Leftrightarrow-3\le m\)\(\le1\) (2)Từ (1) và (2) suy ra giá trị của m là \(-3\le m<-1-\sqrt{3}\) và\(-1+\sqrt{3}\)<m\(\le1\)  
Phạm Thị Bích Thạch
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:23

Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)

Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow\Delta=1>0\) với mọi m

Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)

Theo giả thiết ta có :

                         \(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)