Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Thị Phong Lan
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:18

- Ta có \(y'=4x^3-4m^2x;y'=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m^2\end{cases}\) Điều kiện có 3 điểm cực trị : \(m\ne0\)

- Tọa độ 3 điểm cực trị : A (0;1); B \(\left(-m;1-m^4\right),C\left(m;1-m^4\right)\)

- Chứng minh tam giác ABC cân đỉnh A. Tọa độ trung điểm I của BC là I \(\left(0;1-m^4\right)\)

\(S_{ABC}=\frac{1}{2}AI.BC=m^4\left|m\right|=\left|m\right|^5=32\Leftrightarrow m=\pm2\left(tm\right)\)

Lê Ngọc Toàn
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:11

Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B (2;-2)

Xét biểu thức P=3x-y-2

Thay tọa độ điểm A (0;2) => P=-4<0, thay tọa độ điểm B (2;-2) => P=6>0

Vậy 2 điểm cực đại và cực tiểu nằm về 2 phía của đường thẳng y=3x-2.

Để MA+MB nhỏ nhất => 3 điểm A,M,B thẳng hàng

Phương trình đường thẳng AB : y =-2x+2

Tọa độ điểm M là nghiệm của hệ :

\(\begin{cases}y=3x-2\\y=-2x+2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{4}{5}\\y=\frac{2}{5}\end{cases}\) \(\Leftrightarrow M\left(\frac{4}{5};\frac{2}{5}\right)\)

Nguyễn Hồng Anh
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:05

Với \(x\ne2\) ta có \(y=1-\frac{m}{\left(x-2\right)^2}\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow\) phương trình \(\left(x-2\right)^2-m=0\) (1) có 2 nghiệm phân biệt khác 2 \(\Leftrightarrow m>0\)

Với m>0 phương trình (1) có 2 nghiệm là :

\(x_1=2+\sqrt{m}\Rightarrow y_1=2+m+2\sqrt{m}\)

\(x_2=2-\sqrt{m}\Rightarrow y_2=2+m-2\sqrt{m}\)

Hai điểm cực trị của đồ thị hàm số \(A\left(2-\sqrt{m};2+m-2\sqrt{m}\right);B\left(\left(2+\sqrt{m};2+m+2\sqrt{m}\right)\right)\)

Khoảng cách từ A và B tới d bằng nhau nên ta có phương trình :

\(\left|2-m-\sqrt{m}\right|=\left|2-m+\sqrt{m}\right|\)

\(\Leftrightarrow\begin{cases}m=0\\m=2\end{cases}\)

Đối chiếu điều kiện thì m=2 thỏa mãn bài toán. Vậy yêu cầu bài toán là m=2

Nguyễn Đức Đạt
Xem chi tiết
Lê Ngọc Phương Linh
27 tháng 3 2016 lúc 8:47

Gọi \(M\left(x_1,1-\frac{1}{x_1-1}\right);N\left(x_2,1-\frac{1}{x_2-1}\right)\)

Theo yêu cầu <=> \(\overrightarrow{AN}=-2\overrightarrow{AM}\)

\(\begin{cases}x_2=2-2x_1\\-\frac{1}{3}-\frac{1}{x_2-1}=2\left(-\frac{1}{3}-\frac{1}{x_1-1}\right)\end{cases}\)

M(0,2) ; N(2,0)

d:y=2-x

Lê Thành Công
Xem chi tiết
Lê Ngọc Phương Linh
27 tháng 3 2016 lúc 8:43

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

Mai Linh
Xem chi tiết
Nguyễn Bình Nguyên
27 tháng 3 2016 lúc 9:02

Do \(f'\left(x\right)=x^2-2mx-1=0\)

Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại  \(x_1,x_2\)  với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)

Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên

\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)

\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)

Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)

                  \(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)

                  \(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)

\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)

Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0

Lê Ngọc Toàn
Xem chi tiết
Phạm Thái Dương
26 tháng 3 2016 lúc 11:00

\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)

Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0

- Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)

\(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\)\(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)

\(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)

                                                                \(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)

Võ Bình Minh
Xem chi tiết
Phạm Thái Dương
26 tháng 3 2016 lúc 10:50

Ta có : \(y'=3x^2+6x=0\Leftrightarrow\begin{cases}x=-2\Rightarrow y=m+4\\x=0\Rightarrow y=m\end{cases}\)

Vậy hàm số có 2 điểm cực trị \(A\left(0;m\right);B\left(-2;m+4\right)\)

Ta có \(\overline{OA}=\left(O;m\right);\overline{OB}=\left(-2;m+4\right)\)

Để \(\widehat{AOB}=120^0\) thì \(\cos AOB=-\frac{1}{2}\)

\(\Leftrightarrow\frac{m\left(m+4\right)}{\sqrt{m^2\left(4+\left(m+4\right)^2\right)}}=-\frac{1}{2}\)

\(\Leftrightarrow\) \(m=\frac{-12\pm2\sqrt{3}}{3}\) và -4<m<0

\(\Leftrightarrow m=\frac{-12\pm2\sqrt{3}}{3}\)

Trần Gia Nguyên
Xem chi tiết
Nguyễn Thắng Tùng
26 tháng 3 2016 lúc 10:00

WWW.VNMATH.COM

TAM GIÁC TRONG CÁC BÀI TOÁN LIÊN QUAN ĐẾN
KHẢO SÁT HÀM SỐ
DẠNG 1: Ba điểm cực trị tạo thành tam giác.
Ví d...

Nguyễn Thắng Tùng
26 tháng 3 2016 lúc 10:00

xem ở ví dụ 1 câu 2 nhé ! banhqua

Phạm Thái Dương
26 tháng 3 2016 lúc 10:18

Hàm số có 3 cực trị \(\Leftrightarrow y'=4x\left(x^2-m^2\right)=0\) có 3 nghiệm phân biệt \(\Leftrightarrow m\ne0\) khi đó đồ thị có 3 điểm cực trị là \(A\left(0,1\right);B\left(-m,1-m^4\right);C\left(m,1-m^4\right)\)

Do y là hàm chẵn nên suy ra \(AB.AC=0\Leftrightarrow m=\pm1\)

Đoàn Thị Hồng Vân
Xem chi tiết
Phạm Thái Dương
26 tháng 3 2016 lúc 10:31

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài