Dựa vào tính chất liên hệ giữa thứ tự và phép cộng , hãy chứng tỏ rằng :
a, a>b khi và chỉ khi a-b>0;
b, a+b>c khi và chỉ khi a>c-b.
Áp dụng ,cm rằng a2-a+3_>a+2
Dựa vào tính chất liên hệ giữa thứ tự và phép cộng , hãy chứng tỏ rằng :
a, a>b khi và chỉ khi a-b>0;
b, a+b>c khi và chỉ khi a>c-b.
Áp dụng ,cm rằng a2-a+3_>a+2
a) \(a>b\Leftrightarrow a-b>b-b=0\)
b) \(a+b>c\Leftrightarrow a+b-b>c-b\Leftrightarrow a>c-b\)
c)
Cm: \(a^2-a+3\ge a+2\)
\(\Rightarrow a^2-a+3-a-2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\) *đúng*
Giải các bất phương trình:
a. 2(2x-3)≥5(2+x)+13
b.6x-(3x-9)≤8x-7+(2x+3)
c. 4x+17-3(3-2x)≤10(x+2)
d. -20(x+5)+5x≥ -15(x+4)-1
a,\(2\left(2x-3\right)\ge5\left(2+x\right)+13\)
\(\Leftrightarrow4x-6\ge10+5x+13\)
\(\Leftrightarrow4x-5x\ge10+13+6\)
\(\Leftrightarrow-x\ge29\)
\(\Leftrightarrow x\ge-29\)
a,2(2x−3)≥5(2+x)+132(2x−3)≥5(2+x)+13
⇔4x−6≥10+5x+13⇔4x−6≥10+5x+13
⇔4x−5x≥10+13+6⇔4x−5x≥10+13+6
⇔−x≥29⇔−x≥29
⇔x≥−29
tick và theo dõi giúp mình nha
Cho các số thực dương a, b thỏa mãn ab+bc+ca=3
CM: \(\dfrac{a}{2a^2+bc}\) + \(\dfrac{b}{2b^2+ac}\) + \(\dfrac{c}{ac^2+ab}\) \(\ge\) abc
Giups mình với
neu 10+1=may
Cho 2 số thực x , y thỏa mãn
x + y = 1 và x,y khác 0
CMR \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=0\)
Ta có:
\(A=x\left(x^3-1\right)-y\left(y^3-1\right)=x^4-x-y^4+y\)
\(=\left(x^4-y^4\right)+\left(-x+y\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+y^2-1\right)=\left(x-y\right)\left[\left(x+y\right)^2-2xy-1\right]\)
\(=-2xy\left(x-y\right)\)
\(B=\left(y^3-1\right)\left(x^3-1\right)=x^3y^3-x^3-y^3+1\)
\(=x^3y^3+1-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3y^3+1-\left[\left(x+y\right)^2-3xy\right]\)
\(=xy\left(x^2y^2+3\right)\)
Từ đó ta có:
\(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{x\left(x^3-1\right)-y\left(y^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{-2xy\left(x-y\right)}{xy\left(x^2y^2+3\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=-\dfrac{2\left(x-y\right)}{x^2y^2+3}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=0\)
câu 1: A rectangle has a length of 60cm and a width of 30cm. It is cut into 2 indentical squares, 2 identical rectangles and a shaded small square. Find the area of the shaded square. Find the area of the shaded square
Cho x, y, z là số dương thỏa mãn x2+ y2- z2 >0. Chứng minh x+ y- z>0.
Giải BĐT sau:
\(x^2>2x\)
\(x^2>2x\\
\Leftrightarrow x^2-2x>0\)
\(\Leftrightarrow x\left(x-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\)
Có \(x^2>2x\Leftrightarrow x^2-2x>0\Leftrightarrow x\left(x-2\right)>0\)
\(\Leftrightarrow[\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\Leftrightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\Leftrightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
so sánh a và b biết
a) 3a+2>3b+2
Ta có:
3a+2>3b+2
\(\Leftrightarrow3a>3b\)
\(\Leftrightarrow a>b\)
\(3a+2>3b+2\)\(\)
\(\Rightarrow3a>3b\)
\(\Rightarrow a>b\)
vậy \(a>b\)
\(\dfrac{20003}{273}=7+\dfrac{1}{2+\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}}\) Tìm a, b ,c ,d?