Với 3 số \(a,b,c\) bất kì. Hãy so sánh \(3\left(a^2+b^2+c^2\right)\) với \(\left(a+b+c\right)^2\).
- \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\).
- \(3\left(a^2+b^2+c^2\right)\le\left(a+b+c\right)^2\).
- \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\).
- \(3\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\).