cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
Biết hs y = ax2 bx + c (a#0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua A(0;6). Tính P = abc
Thay x=0 và y=6 vào (P), ta được:
\(a\cdot0^2+b\cdot0+c=6\)
=>c=6
Vì hàm số (P) đạt cực tiểu bằng 4 khi x=2 nên ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=4a\\c=6\\b^2-4ac=-16a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=-4a\\16a^2-24a=-16a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=-4a\\16a^2-8a=0\end{matrix}\right.\)
=>c=6; a=1/2; b=-2
=>P=-6
Câu 1: Cho m # 0, n #0 là nghiệm của pt x2 +mx+n=0. Tính tổng m +n
Có tất cả bao nhiêu giá trị nguyên dương của tham số m thuộc [-10 ; 10] để pt \(\left(m^2-9\right)x=3m\left(m-3\right)\) có nghiệm duy nhất
Để phương trình có nghiệm duy nhất thì \(m^2-9< >0\)
=>\(m\notin\left\{3;-3\right\}\)
=>CÓ 9 số nguyên dương thuộc [-10;10] thỏa mãn yêu cầu đề bài
Caau1 : Có tất cả bao nhiêu giá trị nguyên ko dương của tham số m để pt \(\sqrt{2x+m}=x-1\) có nghiệm duy nhất
Câu 2: Giả sử phương trình 2x2- 4mx - 1 = 0 có 2 nghiệm x1, x2 . Tìm GTNN của biểu thức T = |x1-x2|
Câu 1: Cho biết tập hợp tất cả các giá trị của tham số m để pt \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m+1\) có nghiệm là S [ -a/b; dương vô cùng] với a,b là phân số tối giản. Tính T = a + b
Câu 2: Đường thẳng (d): \(\dfrac{x}{a}+\dfrac{y}{b}=1\) với a, b # 0 đi qua M (-1;6) và tạo với tia Ox, Oy 1 tam giác có diện tích = 4. Tính S = a + 2b
CÂu 3:
CHo đường tròn C ( I; 8cm) và C'(K;10cm). Để có 4 tiếp tuyến chug của 2 đg tròn thì IK nhận giá trị nào sau đây (giải chi tiết hộ mk )
a) IK = 18 b) IK = 2 c) IK <18 d) Ik>18
Tìm m để phương trình sau có nghiệm
\(\dfrac{\left(m-1\right)x-5}{\sqrt{9-x^2}}\)=\(\dfrac{\left(m+1\right)x+m}{\sqrt{9-x^2}}\)
Giải hệ phương trình
2|x+5|-6|y|=-2
3|x+5|+4|y|=10
\(\left\{{}\begin{matrix}2\left|x+5\right|-6\left|y\right|=-2\\3\left|x+5\right|+4\left|y\right|=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x+5\right|=2\\\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+5\in\left\{2;-2\right\}\\y\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-3;-7\right\}\\y\in\left\{1;-1\right\}\end{matrix}\right.\)
Cho hàm số \(y=\dfrac{1}{x+1}\)có đồ thị (c). Hỏi phải tịnh tiến (c) như thế nào để được:
a) \(\left(c_1\right):y=\dfrac{2x+1}{x+1}\)
b) \(\left(c_2\right):y=\dfrac{1-3x}{x}\)
c) \(\left(c_3\right):y=\dfrac{2x-1}{x-1}\)
Cho \(\cot\alpha=3\). Giá trị của biểu thức P = \(\dfrac{2\sin\alpha+3\cos\alpha}{4\sin\alpha-5\cos\alpha}\) bằng ?
Lời giải:
Ta có:
\(P=\frac{2\sin \alpha+3\cos \alpha}{4\sin \alpha-5\cos \alpha}=\frac{2+\frac{3\cos \alpha}{\sin \alpha}}{4-\frac{5\cos \alpha}{\sin \alpha}}\)
\(=\frac{2+3\cot \alpha}{4-5\cot\alpha}=\frac{2+3.3}{4-5.3}=-1\)