cho x,y>0 và xy=1. Tim GTLN A=x^2+3x+y^2+3y+\(\frac{9}{x^2+y^2+1}\)
Nếu \(x+\sqrt{xy}+y=9\)và \(x^2+xy+y^2=27\). Tính \(x-\sqrt{xy}+y\)
Cho x,y >0 và xy=1
Tìm Min \(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Cho x,y,z>0 và x+y+z=9
tìm gtnn của S=\(\frac{x^3}{x^2+xy+y^2}\)+\(\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+xz+x^2}\)
tìm min A=\(x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)với x,y>0 và xy=1
Giúp Đi PLS
Giải hệ pt: a)x^3+y^3=2 và x^2+y^2=2
b)x^3+y^3+xy=3 và xy+x+y=3
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️