VT = 101x + 1+2+3+...+100 = 101x + 1/2*100*101
PT <=> 101x + 50*101 = 5353
<=> x + 50 = 53
<=> x = 3
Ta có: x+(x+1)+(x+2)+...+(x+100)=5353
<=> 101x + (1 + 2 + ....+ 100) = 5353
<=> 101x + 2550 = 5353
=> 101x = 5353 - 2550
=> 101x = 2803
=> x =2803 : 101
=> x =????????????
Ta có: x+(x+1)+(x+2)+...+(x+100)=5353
<=> 101x + (1 + 2 + ....+ 100) = 5353
<=> 101x + 5050 = 5353
=> 101x = 5353 - 5050
=> 101x = 303
=> x =303 : 101
=> x = 3
x+(x+1)+(x+2)+...+(x+100)=5353 ( có 100 nhóm )
=> ( x+x+x+....+x) + ( 1+2+3+....+100) = 5353 ( có 101x và 100 số hạng )
=> x101 + (100+1).101:2 = 5353
=> x101 + 5151 = 5353
x101 = 202
=> x = 202 : 101
x = 2
x+(x+1)+...+(x+100) = 5353
101x+ 1+2+3+...+100 = 5353
101x+ (100x101):2=5353
101x+ 5050 = 5353
101x = 5353-5050
101x = 303
x= 303:101=3.
Vậy x=3
<=>\(\left(x+x+x+...+x\right)+\left(1+2+...+100\right)\)\(=5353\)
<=>\(\left(101.x\right)+5050\)\(=5353\)
<=> \(101.x=303\)
=>\(x=\frac{303}{101}\)\(=3\)
Vậy x= 3
Ta có: x+(x+1)+(x+2)+...+(x+100)=5353
<=> 101x + (1 + 2 + ....+ 100) = 5353
<=> 101x + 5050 = 5353
=> 101x = 5353 - 5050
=> 101x = 303
=> x =303 : 101
=> x = 3