\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Leftrightarrow3C-C=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow2C=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow C=\frac{1-\frac{1}{3^{99}}}{2}=\frac{1}{2}-\frac{1}{2-3^{99}}\)
Vậy \(C< \frac{1}{2}\)\(\left(DPCM\right)\)