Xét đa thức bậc nhất P(x) = ax + b. Tìm điều kiện của các hằng số a, b để có đẳng thức: \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)với mọi số thực \(x_1,x_2\)
Cho đa thức \(f_{\left(x\right)}=ax+b\)
Tìm điều kiện của a, b để :
\(f_{\left(x_1+x_2\right)}=f_{\left(x_1\right)}+f_{\left(x_2\right)}\)
\(x_1;x_2\inℚ\)
Cho đa thức \(P\left(x\right)\) thỏa mãn:
\(P\left(1\right)=1;P\left(\frac{1}{x}\right)=\frac{1}{x^2}.P\left(x\right)\) với \(x\ne0\) và \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\) với mọi \(x_1,x_2\in R\).Tính \(P\left(\frac{5}{7}\right)\)
Chứng minh rằng nếu \(x_1;x_2\)là 2 nghiệm của đa thức \(Q\left(x\right)=ax^2+bx+c\)\(\left(a\ne0\right)\)
\(CMR:\)
\(Q=a\left(x-x_1\right)\left(x-x_2\right)\)
Lớp 7 em có từng làm 1 bài này, thấy hay đăng cho mọi người tham khảo =D
XD
Cho hàm số f(x) thỏa mãn điều kiện:
a) \(f\left(x\right)=0\)
b) \(\frac{f\left(x_1\right)}{x_1}=\frac{f\left(x_2\right)}{x_2}\)với x1,x2 là các giá trị bất kỳ của x và khác 0. Chứng minh rằng \(f\left(x\right)=a\) với a là hằng số
Cho hàm số có tính chất \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)với \(x_1,x_2\inℝ\).Chứng minh rằng hàm số \(y=f\left(x\right)\)có các tính chất sau:
a)\(f\left(0\right)=0\)
b)\(f\left(-x\right)=-f\left(x\right)\)với \(x\inℝ\)
c)\(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
132. Cho hàm số \(y=f\left(x\right)=kx\)( k là hằng số, \(k\ne0\)). Chứng minh rằng:
a) \(f\left(10x\right)=10f\left(x\right)\)
b) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
c) \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
Cho hàm số \(f\left(x\right)\) có dạng \(f\left(x_1\right)+f\left(x_2\right)=f\left(x_1+x_2\right)\)
chứng minh rằng \(f\left(x_1\right)-f\left(x_2\right)=f\left(x_1-x_2\right)\)
ai làm nhanh nhất mình tick cho nha
giúp mình với
Cho hàm số \(y=f\left(x\right)\)xác đinh với mọi \(x\inℚ\)và có tính chất \(f\left(x_1\cdot x_2\right)=x_1\cdot f\left(x_2\right)\)với mọi \(x_1\)và \(x_2\)\(\inℚ\). CMR: Nếu f(1)=a (a\(\ne\)0) thì y=f(x)=ax với mọi x\(\inℚ\)